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Introduction

No need to underline the importance of understanding
statistics and data analysis— Many example in recent news
proves that it is crucial to be able to understand what
does all this mean- Election results, statistics on unem-
ployment, on global warming, .... Everything seems to
be based on data analysis. A small story of measurement
before starting.

John is a carpenter who wants to install a door in a door-
way. He wants then to know how high is the doorway.
First he could just look at it and estimates that it is 210
cm high. That’s fine, but for the door installation he would
need a more precise measurement. So OK, he gets some
tape measure and gets a 211.3 cm measurement. That is
more precise than his original eye-balling estimate, but
it’s also has some uncertainty. At this point there may be
some source of errors that could make the measurement
better. For example, maybe John used a tape which is
only graduated in half-centimeters. So the mark was be-
tween 211.0 and 211.5 and not exactly in the middle and
John estimated that it was 211.3 cm. This could get cor-
rected by getting a better tape and make the measurement
more accurate. Let’s say John is a very obsessive carpenter
and wants NO uncertainty in his measurement. Here he
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goes to buy a laser interferometer to measure the high of
this door. Now, the precision of the measurement is going
to be limited by the wavelength of the light used in the
measure (about 5x1077 m), so even then John would not
know the height of the door exactly. Furthermore, he is
going to find that he cannot even define a single quantity
as being the height of the door: the height will vary
at some places the paint is a little more bulkier, as some
others there are scratches,.... The height of the door is
not a well-defined quantity. This is called a problem of
definition and comes into play in many scientific mea-
surements.

The morale of the story: It is impossible to eliminate un-
certainties completely- understanding and reducing them
becomes the goal.




Terms definitions

A) Mean, variance, skewness and so forth

We start from a set of values z;, where ¢ varies from 1 to
N—To characterize the distribution of x;, we can compute
few numbers which are related to its different “moments”
M,, (sums of integer powers of the values).

The mean is linked to Mj:

T =Y - M 1)
xr = — T, = —=
N = Nt

The mean estimate the value around which the z; distri-
bution clusters.
The variance is linked to My and M:
N

Var = ﬁ 7;:1($i — 1) (2)
and the standard deviation: o = v Var
Note: With this definition, ¢ is called “sample standard
deviation” . When the denominator N — 1 is changed
to N, o is called “population standard deviation”. The
denominator N — 1 should be changed to V if you're mea-
suring the variance of a distribution for which you know
a priori T the mean (ie: you don’t estimate it from the
data).
The standard deviation estimates the mean deviation of
the distribution from the mean value.




Terms definitions

The skewness:

 — X

Skew—NZZ[ - K (3)

The skewness characterizes the degree of asymmetry of a

distribution around its mean.
Higher orders quantities can be defined by a general for-
mula:

T n
= 4
Zn N -1 O | (4)
B) Accuracy, precision, uncertalntles, and so on

Accuracy refers to the closeness of the measurements to
the value of a physical quantity, whereas the term preci-
sion is used to indicate the closeness with which the mea-
surements agree with one another quite independently of
any systematic error involved.

C) Random, statistical and systematic errors

Random (statistical) error: associated with any statistical
process-

Systematic error (uncertainty): error that will occur no
matter what as a result of the instrument used to make
the measurement-




Propagation of errors

Quick summary on propagation of errors

Let dx be the error on the measure of a quantity x.

We have (measured =) == Xpest £ 02

0x is not telling the complete story: a dx of lcm on a
quantity about 10cm is not the same thing that a dx of
lcm on the height of Everest. This is why we introduce
the notion of fractional uncertainty which is simply

ox
[Thest|”

A) Errors on a sum or a difference

1) First approximation:

[tS=x1+2y+x3+..+ 2N, thedg =04 + 0y + ... 0z
2) If all the z; are independent and random:

05 = |02, + 02, + .02,

B) Errors on a product or a quotient

1) First approximation:

If P — T1XTo9X...XT N
Y1 XY2 X ... XYM

_ Oz a0y Sypg
op = o Tt o T ++ v
2) If all the x; and y; are independent and random:

5 ) 2 5
6p _ |9z oy | Oy dyps
P_Jxl R




Propagation of errors

C) Errors on a function of several variables
If 21, z9,...,x v are measured with uncertainties 0, ,04,,...,04 -
If the uncertainties in x1, xo,...,x are independent and

random, then the uncertainties in f(z1, xs,...,zx) is

5 = ¢(g’—xﬁ§xl)2 ot (26,,)




Several type of data distributions

Binomial distribution; Testing an hypothesis

Supposed that a manufacturer of ski waxes claims to have
developed the best of the best wax- How do you test this
claims?

You could organize races between skis with and without
wax and see how many of the waxed skis actually win the
races.

To test the hypothesis that the wax does not make any
difference, one can ask “What is the probability of wining
w of the N races?”

P(w wins in NV races)= #iw)!()b]v

(P(N wins in N races)= 0.5 — if one wants this to be
“highly significant” (ie with a probability less than 1%,
then one needs more than 7 races).

P follows a binomial distribution— general form: P(w wins

in IV races)= 7w!(jzvviw)!pw(1 — p)V-

where p is the probability of “success”.

Important things about the binomial distribution:
1) w=Np

2) ou,=Np(1—p)
3) When N becomes large, binomial distribution con-
verges toward Gaussian distribution

Binomial distribution



Several type of data distributions

Poisson distribution

Poisson distribution describes the results of experiments
where events occur at random but at a definite average
rate (example: counting the number of electrons emitted
by radioactive decays in a given period of time).

In the example given above, the number of electrons counted
during a given (and fixed) period of time will most cer-
tainly vary. This variation is linked to the physical process
of the radioactive decays themselves.

Each radioactive nucleus has a certain probability for de-
cay, but they all decay at a random time.

So now the question becomes: “ If we repeat the counting
experiment N times, what distribution of the number of
decays recorded would follow? ”

It turns out that the answers is:

P(w counts any fixed time interval)= e #%;

Important things about the Poisson distribution:

1) w=v ie the parameter of the Poisson distribution is
precisely the number expected from a large number of
experiments.

2) o=V

3) When v becomes large, Poisson distribution converges
toward Gaussian distribution

Poisson distribution



Several type of data distributions

Gaussian or Normal distribution

Continuous distribution— (as opposed to the discrete dis-
tributions mentioned above) — Describe the distribution of
measurements subjects to many sources of error that are

all random and small.

—(z—20)%/202
fxo’a(x)za 127T€ (r—20)%/2

Important things about the Gaussian distribution:

1) It is the most important distribution in statistics
2) T=1x,
3) o,=0== the width of the distribution

10
Gaussian distribution



Several type of data distributions

Rejection of data — Chauvenet’s criterion

Suppose we make N measurements of the same quantity x.
From all N measurements, we compute T and o,. If one
measurement x; is very far from Z, we compute the quan-
tity t:(ﬁj—j), which is the number of standard deviations by
which z; differs from . Then, we compute the probability
that the measurement lies outside interval defined by = =+ to,.

Then n is the total number of measurements N multiplied by
the probability. If n is less than 0.5, z1 value failed the Chau-
venet’s test and should be rejected.

Many scientists think that data should never be rejected (un-
less there is external evidence that the data have been cor-
rupted in some ways). A more moderate interpretation of the
Chauvenet’s criterion is that it is useful to identify the statis-
tical “loners” .
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Gaussian distribution



Several type of data distributions

Some others distributions

— Multinomial: Gives probability of exactly n; outcomes

of event ¢, for : = 1, 2, ..., n in N independent trials
when the probability of event ¢ in a single trial is a
constant.

— Hypergeometric: Gives probability of picking exactly
w good units in a sample of N units from a popu-
lation of M units when there are k bad units in the
population

— Geometric: Gives probability of requiring exactly x
binomial trials before the first success is achieved

— Pascal: Gives probability of exactly x failures preced-
ing the n success — Sometimes identified as “Negative
binomial”

— and so on...
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Some others distributions



Comparing data and model

y? minimization

We want to decide if the measured distribution is con-
sistant with the model (theoretical) distribution. To
do this we use what is called the x? test. We performe
a total of IV observations
O;. 1s the observed value of the kth observation.
E). are the expected value of kth observation.
First definition: ,

y2= Zé\le (OkEkEk)
If x?2 ~ N then the distributions are consistent

if x2 > N the two distributions are inconsistent.

In fact the correct number to which to compare x?
is not IV (the number of bins/trials) but what is called
degrees of freedom d. d=N-c where c is the num-
ber of number of parameters computed from the data
and used in the calculation (¢ can also be viewed as
the number of constraints on the model).

13
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Comparing data and model

We define the “reduced x*’ = y2=x> /d
The measured distribution can be rejected at the CL%
Confidence Level, if P(x2 > x2) < CL%

where P(x) is probability of z and x? is the measured
reduced x?.

The exact formula for P(x2 > x2) is given by

2 0 =1 ,~?/2
e d
22T (d/2) ' Jig !

P(x2>x2) =

14
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Comparing data and model

Satellite orbit

1) Target visibility

2) Thermal environment — Reflected sunlight from Earth

3) Electromagnetic environment (radiations, contam-
inations by scattered solar X-rays

4) Particle environment — cosmics rays, protons, ...

5) Zero gravity

6) Vacuum environment — some ice build up on detec-
tors

7) Clocks — each satellite has its own internal clock
and light travel time taken into account

15
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Comparing data and model

Spectral Imaging

1
2
3
4

IRAF/PROS

XSPEC

CIAO

Anything that works...

N’ e e N

Timing

1) IRAF/PROS
2) XRONOS
3) Anything that works...
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Homework

1) Consider an election between 2 candidates A and
B. Suppose that candidate A claims that extensive re-
search has established that he is favored by 60% of the
population. B is not happy to hear that and ask you
to check out this claim. You select a randomly selected
pool of 600 voters and ask their preferences. 330 peo-
ple says that they prefer candidate A- Can we claim
to have cast a significant doubt on the hypothesis that
60% favors A7

2) Problem appended— (number 12.14)
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